46 research outputs found

    Refactorings of Design Defects using Relational Concept Analysis

    Get PDF
    Software engineers often need to identify and correct design defects, ıe} recurring design problems that hinder development and maintenance\ud by making programs harder to comprehend and--or evolve. While detection\ud of design defects is an actively researched area, their correction---mainly\ud a manual and time-consuming activity --- is yet to be extensively\ud investigated for automation. In this paper, we propose an automated\ud approach for suggesting defect-correcting refactorings using relational\ud concept analysis (RCA). The added value of RCA consists in exploiting\ud the links between formal objects which abound in a software re-engineering\ud context. We validated our approach on instances of the <span class='textit'></span>Blob\ud design defect taken from four different open-source programs

    The comparative responsiveness of Hospital Universitario Princesa Index and other composite indices for assessing rheumatoid arthritis activity

    Get PDF
    Objective To evaluate the responsiveness in terms of correlation of the Hospital Universitario La Princesa Index (HUPI) comparatively to the traditional composite indices used to assess disease activity in rheumatoid arthritis (RA), and to compare the performance of HUPI-based response criteria with that of the EULAR response criteria. Methods Secondary data analysis from the following studies: ACT-RAY (clinical trial), PROAR (early RA cohort) and EMECAR (pre-biologic era long term RA cohort). Responsiveness was evaluated by: 1) comparing change from baseline (Delta) of HUPI with Delta in other scores by calculating correlation coefficients; 2) calculating standardised effect sizes. The accuracy of response by HUPI and by EULAR criteria was analyzed using linear regressions in which the dependent variable was change in global assessment by physician (Delta GDA-Phy). Results Delta HUPI correlation with change in all other indices ranged from 0.387 to 0.791); HUPI's standardized effect size was larger than those from the other indices in each database used. In ACT-RAY, depending on visit, between 65 and 80% of patients were equally classified by HUPI and EULAR response criteria. However, HUPI criteria were slightly more stringent, with higher percentage of patients classified as non-responder, especially at early visits. HUPI response criteria showed a slightly higher accuracy than EULAR response criteria when using Delta GDA-Phy as gold standard. Conclusion HUPI shows good responsiveness in terms of correlation in each studied scenario (clinical trial, early RA cohort, and established RA cohort). Response criteria by HUPI seem more stringent than EULAR''s

    Simulating metabolic flexibility in low energy expenditure conditions using genome-scale metabolic models

    Get PDF
    Metabolic flexibility is the ability of an organism to adapt its energy source based on nutrient availability and energy requirements. In humans, this ability has been linked to cardio-metabolic health and healthy aging. Genome-scale metabolic models have been employed to simulate metabolic flexibility by computing the Respiratory Quotient (RQ), which is defined as the ratio of carbon dioxide produced to oxygen consumed, and varies between values of 0.7 for pure fat metabolism and 1.0 for pure carbohydrate metabolism. While the nutritional determinants of metabolic flexibility are known, the role of low energy expenditure and sedentary behavior in the development of metabolic inflexibility is less studied. In this study, we present a new description of metabolic flexibility in genome-scale metabolic models which accounts for energy expenditure, and we study the interactions between physical activity and nutrition in a set of patient-derived models of skeletal muscle metabolism in older adults. The simulations show that fuel choice is sensitive to ATP consumption rate in all models tested. The ability to adapt fuel utilization to energy demands is an intrinsic property of the metabolic network

    A Distance-Based Framework for the Characterization of Metabolic Heterogeneity in Large Sets of Genome-Scale Metabolic Models

    No full text
    Gene expression and protein abundance data of cells or tissues belonging to healthy and diseased individuals can be integrated and mapped onto genome-scale metabolic networks to produce patient-derived models. As the number of available and newly developed genome-scale metabolic models increases, new methods are needed to objectively analyze large sets of models and to identify the determinants of metabolic heterogeneity. We developed a distance-based workflow that combines consensus machine learning and metabolic modeling techniques and used it to apply pattern recognition algorithms to collections of genome-scale metabolic models, both microbial and human. Model composition, network topology and flux distribution provide complementary aspects of metabolic heterogeneity in patient-specific genome-scale models of skeletal muscle. Using consensus clustering analysis we identified the metabolic processes involved in the individual responses to resistance training in older adults. High-throughput techniques enable the analysis of complex biological systems at multiple levels, including genome, transcriptome, proteome, and metabolome. Integration of multi-omics data is often focused on dimensionality reduction and feature selection for classification tasks. Genome-scale metabolic models are extensive maps of the network of biochemical reactions taking place in a particular cell, tissue or organism. Each reaction is associated with the respective enzyme and gene, enabling the mapping of transcriptomics and proteomics data and providing a structure for the system-level interpretation of multi-omics datasets. The result of this process is a personalized model that gives a snapshot of the metabolic status of an individual. Analyzing these complex models, for example, to detect differences between individuals, is cumbersome. We applied consensus clustering to a set of data-driven models to monitor the progression of a lifestyle intervention in a cohort of older adults. Genome-scale metabolic models are maps of the metabolic network that function as structures for the integration of molecular data, such as transcriptomics and proteomics. We developed a method for the analysis of large sets of data-driven models, using different distance metrics to quantify model similarity. Consensus analysis is then used to reach a single metabolic distance. The method was applied to model the individual variability in the responses to resistance training in a cohort of older adults

    Source-to-Source Transformation in the Large

    No full text

    Lessons Learned from Automated Analysis of Industrial UML Class Models (An Experience Report)  

    No full text

    A New Paradigm for Requirements Specification and Analysis of System-of-Systems

    No full text

    Quantifying the composition of human skin for glucose sensor development

    No full text
    Background: Glucose is heterogeneously distributed within human skin. In order to develop a glucose measurement method for human skin, both a good quantification of the different compartments of human skin and an understanding of glucose transport processes are essential. This study focused on the composition of human skin. In addition, the extent to which intersubject variability in skin composition alters glucose dynamics in human skin was investigated. Methods: To quantify the composition of the three layers of human skin - epidermis, dermis, and adipose tissue - cell and blood vessel volumes were calculated from skin biopsies. These results were combined with data from the literature. The composition was applied as input for a previously developed computational model that calculates spatiotemporal glucose dynamics in human skin. The model was used to predict the physiological effects of intersubject variability in skin composition on glucose profiles in human skin. Results: According to the model, the lag time of glucose dynamics in the epidermis was sensitive to variation in the volumes of interstitial fluid, cells, and blood of all layers. Data showed most variation/uncertainty in the volume composition of the adipose tissue. This variability mainly influences the dynamics in the adipose tissue. Conclusions: This study identified the intersubject variability in human skin composition. The study shows that this variability has significant influence on the glucose dynamics in human skin. In addition, it was determined which volumes are most critical for the quantification and interpretation of measurements in the different layers

    Feed‐food competition in global aquaculture: Current trends and prospects

    No full text
    Feed-food competition is the allocation of resources that can be used to feed humans to animal feed instead, a current but unsustainable practise not well documented for aquaculture. Here, we analysed feed-food competition in aquaculture using two measures; natural trophic levels (TLs) and species-specific human-edible protein conversion ratios (HePCRs). The HePCR equals the ratio of human edible protein in feed (input) to the human edible protein in animal produce (output). To provide prospects on aquaculture's potential to convert human inedible by-products into edible biomass, data on aquaculture production were collected and categorized based on natural TLs. HePCRs were computed for four aquaculture species produced in intensive aquaculture systems: Atlantic salmon, common carp, Nile tilapia and whiteleg shrimp. Under current feed use, we estimated that the carp, tilapia and shrimp considered were net contributors of protein by requiring ~0.6 kg of human edible protein to produce 1 kg of protein in the fillet/meat. Considering soya bean meal and fishmeal as food-competing ingredients increased the HePCR to ~2 and turned all of the case-study species into net consumers of protein. To prevent this increase, the use of high-quality food-competing ingredients such as fishmeal, or soya bean products should be minimized in aquaculture feed. In the future, the role of aquaculture in circular food systems will most likely consist of a balanced mix of species at different TLs and from different aquaculture systems, depending on the by-products available
    corecore